The Table listed below provides examples of how the quantum numbers were resolved based on the "rules" that have been defined by JPL and CDMS. In general, while many of the examples provided below describe how the quantum numbers were translated, many of the molecular species contained in this database and others do NOT follow any exact rule for interpreting the transition. If there are questions on the translation, the user should refer back to the original reference of the molecule. All the references for each species contained in Splatalogue can be found by clicking on the molecular species of interest in the display list. See figure below:
In addition, if the user wants to see the quantum number code, they can turn on the "Quantum Number Code" display contained in the "Miscellaneous" options in the left hand pane. 
Code Number 
Molecular Examples 
Electronic State(s) 
Unresolved QN  Description and Notes 

101  CO, HCN, N_{2}O  ^{1}&Sigma  N  N = J, integer values 
102  SO, C_{2}S  ^{3}&Sigma  N J  N, J, integer values 
112  AlF, C^{17}O  ^{1}&Sigma  J F+^{1}⁄_{2}  one nuclear spin, I=^{5}⁄_{2} (Al, O) 
113  ^{33}SO  ^{3}&Sigma  N J F+^{1}⁄_{2}  one nuclear spin, I=^{3}⁄_{2} (Cl) 
114  HCCN  ^{3}&Sigma  N J F_{1} F+^{1}⁄_{2}  two nuclear spins, I=1 (N and H) 
123  AlCl  ^{1}&Sigma  J F+^{1}⁄_{2} F  two nuclear spins, I=^{5}⁄_{2}(Al) I=^{3}⁄_{2}(Cl) 
C^{15}N, C_{2}H  ^{2}&Sigma  N J+^{1}⁄_{2} F  one nuclear spin, I=^{1}⁄_{2}(^{15}N, H)  
133  SiN, MgNC  ^{2}&Sigma  N J+^{1}⁄_{2} F+^{1}⁄_{2}  one nuclear spin, I=1(N) 
144  ^{13}CN  ^{2}&Sigma  N J+^{1}⁄_{2} F_{1} F  CDMS: J=N+S, F_{1}=J+I(^{13}C), F=F_{1}+I (N) 
N J+^{1}⁄_{2} F_{2} F  JPL: J=N ± S; F_{1}=SI (^{13}C)=0, F_{2}=N
F_{1}=S+I(^{13}C)=1,
F_{2}=N, N ±
1 

(Q=12+2 = 14, for two I=1/2 spins, one I=1)  
154  ^{13}C_{2}H, ^{13}CCCCH  ^{2}&Sigma  N J+^{1}⁄_{2} F_{1} F+^{1}⁄_{2}  Q=12, 3 spins of 1/2 (I=1/2, I=1/2, S=1/2),
N+^{1}⁄_{2}=J, J+^{1}⁄_{2}=F_{1},
F_{1}+^{1}⁄_{2}=F 
202  CH_{3}C^{15}N, CH_{3}NC  ^{1}A_{1}  N K  no hyperfine structure from nitrogen 
203  SiC  ^{3}&Pi  N p J  &Omega=1: N=J; &Omega=2: N=J+1; &Omega=2:N=J1;
Exception: the J=10 & J=21 don't correspond to above rules
p is 1 or 1; for even J: 1=e & 1=f; for odd J: 1=f & 1=e 
^{13}CH_{3}CN  ^{1}A_{1}  N K F  I=1/2 (^{13}C)  
213  SO^{+}  ^{2}&Pi_{r}  N P J+^{1}⁄_{2}  for &Pi_{1/2}: J=N+^{1}⁄_{2}; for &Pi_{3/2}: J=N^{1}⁄_{2}
Lower States for odd J: p=1&rarr e ; p=1 &rarr f
&Delta J=1, parity changes, but ee or ff 
CH_{3}^{35}Cl  ^{1}A_{1}  N K F+^{1}⁄_{2}  
224  CH, lC_{7}H, C_{8}H  ^{2}&Pi_{r}  N P J+^{1}⁄_{2} F  for &Pi_{1/2}: J=N+^{1}⁄_{2}; for &Pi_{3/2}: J=N^{1}⁄_{2}
Lower States for odd J: p=1&rarr e ; p=1 &rarr f
&Delta J=0 (&Lambda doublet), parity changes, but ef
Lower States for odd J: p=1&rarr e ; p=1 &rarr f
&Delta J=1, parity changes, but ee or ff 
234  SiNC, SiCN  ^{2}&Pi_{r}  N P J+^{1}⁄_{2} F+^{1}⁄_{2}  one nuclear spin, I=1 (N) for &Pi_{1/2}: J=N+^{1}⁄_{2}; for &Pi_{3/2}: J=N^{1}⁄_{2}
Lower States for odd J: p=1&rarr e ; p=1 &rarr f
&Delta J=1, parity changes, but ee or ff 
303  HOCO^{+}  N K_{a} K_{c}  J=N  
ND_{3}  J K_{a} v  The K column has some strange alpha codes  
304  CH_{2}NH, NH_{2}CHO  N K_{a} K_{c}  J=N  
314  CH_{2}CN  ^{2}B_{1}  N K_{a} K_{c} J+^{1}⁄_{2}  there is a separate hyperfine structure calculation 
325  HCO  ^{1}A^{'}  N K_{a} K_{c} J+^{1}⁄_{2} F  
814  NO, NS  ^{2}&Pi_{r}  J+^{1}⁄_{2} &Omega+^{1}⁄_{2} p F+^{1}⁄_{2}  &Omega=1: &Pi_{1/2}; &Omega=2, &Pi_{3/2} 
999  CH_{3}OH  N K_{a} K_{c} p v  From CDMS. For JPL CH_{3}OH see code 1303
P is + or  for the A state only
The CDMS data is identical to SLAIM with exception of no calc
value where measurements are listed. 

1202  CF^{+}, CS  ^{1}&Sigma  N=J v  
1224  CN  ^{2}&Sigma  N v J+^{1}⁄_{2} F  
1234  CN  ^{2}&Sigma_{}  N v J+^{1}⁄_{2} F+^{1}⁄_{2}  
1303  HCN, HNC, HCO^{+}  ^{1}&Sigma  J l/p v  
CH_{3}CCH  J K v  v is always 0 here  
NH_{3}, ^{15}NH_{3}  J K v  v is 0 or 1 for Os and Oa sym and asy states  
CH_{3}OH  J K v  v=14 for diff. A and E labels (use SLAIM)  
1304  CH_{3}CN  N K v F  v=0 ground; v=1 K*l=0 ldoubling; v=2 K*l=0 1v8 CCN bend  
1314  N p v F  
1325  lC_{3}H  ^{2}&Pi_{r}  N p v J+^{1}⁄_{2} F  
1345  iC_{3}H  ^{2}B_{2}  N K_{a} K_{c} J+^{1}⁄_{2} F  
1404  CH_{3}OCH_{3}, glycol, cC_{3}H_{2}  N K_{a} K_{c} v  
1405  H_{2}CCNH, NH_{2}CO_{2}CH_{3}  N K_{a} K_{c} v F  The "F" QN can also denote an A or E state as in the case for NH_{2}CO_{2}CH_{3} or 0s or 0a states as in NH_{2}D  
1905  OH  ^{2}&Pi_{r}  J+^{1}⁄_{2} &Omega+^{1}⁄_{2} p v F  column 2: 1=&Pi_{1/2} and 2=&Pi_{3/2}; p is 1 or 1 and v is always 0
Only needs columns 1, 2, 3, 5 
2306  CH_{2}  ^{3}B_{1}  N K_{a} K_{c} J I_{tot} F  I 
3406  H_{2}NCH_{2}CN  N K_{a} K_{c} F_{1} F  
6315  CH_{2}CN  ^{2}B_{1}  N K_{a} K_{c} n F+^{1}⁄_{2}  n is a combined quantum number (QN) because more than
6 QNs are needed 
7416  NH_{2}  N K_{a} K_{c} v n F  Column 4 is always 0; Column 5 ranges from 123=unknown 